Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Chun-Hua Diao* and Ming Yu

College of Sciences, Tianjin University of Science and Technology, Tianjin 300222, People's Republic of China

Correspondence e-mail: diao_chunhua@163.com

Key indicators

Single-crystal X-ray study $T=294~\mathrm{K}$ Mean $\sigma(\mathrm{C-C})=0.004~\mathrm{\mathring{A}}$ R factor = 0.045 wR factor = 0.110 Data-to-parameter ratio = 12.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(*E*)-4- $\{2-[2-(2,4-Dinitrophenoxy)ethoxy]-3-methoxy-benzylideneamino}-1,5-dimethyl-2-phenyl-1$ *H*-pyrazol-3(2*H*)-one

In the title compound, $C_{27}H_{25}N_5O_8$, the \emph{o} -vanillin (2-hydroxy-3-methoxybenzaldehyde) group makes dihedral angles of 10.42 (9), 33.90 (9) and 61.62 (8)° with the pyrazolone ring, the terminal dinitrobenzene ring and the terminal phenyl ring, respectively. The crystal packing is stabilized by an intermolecular $C-H\cdots O$ —C hydrogen bond that forms a centrosymmetric dimer, together with an intermolecular $C-H\cdots O$ —N hydrogen bond.

Received 7 September 2006 Accepted 11 September 2006

Comment

There has been steady growth of interest in the structure and reactivity of Schiff bases owing to their potential biological activities such as antibacterial and antitumor (Klayman *et al.*, 1979). Consequently, a significant effort has been devoted to the synthesis of Schiff base derivatives to develop protein and enzyme mimics (Santos *et al.*, 2001). Among the large number of compounds, 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one forms a variety of Schiff bases with aldehydes, and the synthesis and crystal structures of some of them, such as 4-[(2-hydroxy-3-methoxybenzylidene)amino]-1,5-dimethyl-2-phenyl-1*H*-pyrazol-3(2*H*)-one (Diao *et al.*, 2005) and (*E*)-4-[3-(4-chlorobenzyloxy)-4-methoxybenzylideneamino]-1,5-dimethyl-2-phenyl-1*H*-pyrazol-3(2*H*)-one (Duan *et al.*, 2006), have been reported. We report here the synthesis and structure of the title compound, (I) (Fig. 1).

$$O_2N$$
 O_2
 O_2
 O_3
 O_4
 O_5
 O_5
 O_7
 O_8
 O_8
 O_8
 O_9
 O_9

The bond lengths and angles in (I) are within normal ranges (Allen *et al.*, 1987). The pyrazolone ring (C17–C19/N3/N4/N5/O8) is almost planar, with an r.m.s. deviation for fitted atoms of 0.0205 Å. It makes a dihedral angle of 54.15 (8)° with the attached phenyl ring (C22–C27). The *o*-vanillin unit (C9–C14/C16/O6/O7) is planar, with an r.m.s. deviation for fitted atoms of 0.0334 Å, and makes dihedral angles of 10.42 (9), 33.90 (9) and 61.62 (8)° with the pyrazolone ring, the terminal C1–C6 benzene ring and the terminal phenyl ring, respectively. The

© 2006 International Union of Crystallography All rights reserved

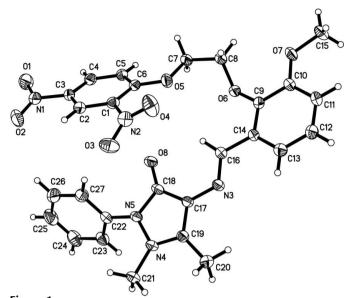


Figure 1
The molecular structure of (I), with displacement ellipsoids for non-H atoms drawn at the 30% probability level.

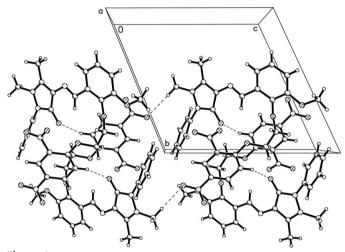


Figure 2 Partial packing diagram of (I), viewed along the a axis, showing intermolecular $C-H\cdots O$ hydrogen bonds (dashed lines).

crystal packing is stabilized by a weak non-classical intermolecular $C5-H5\cdots O8^{ii}$ — $C18^{ii}$ hydrogen bond that forms a centrosymmetric dimer (Fig. 2), together with an intermolecular $C21-H21C\cdots O2^{i}$ — $N1^{i}$ hydrogen bond (symmetry codes as given in Table 1).

Experimental

An anhydrous ethanol solution (30 ml) of 2-[2-(2,4-dinitrophenoxy)ethoxy]-3-methoxybenzaldehyde (3.62 g, 10 mmol) was added to an anhydrous ethanol solution (30 ml) of 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one (2.03 g, 10 mmol) and the mixture was stirred at 350 K for 5 h under nitrogen, giving a yellow precipitate. The product was isolated and recrystallized from acetonitrile, and then dried in a vacuum to give the pure compound (I) in 85% yield. Yellow single crystals suitable for X-ray analysis were obtained by slow evaporation of an acetonitrile solution.

Crystal data

$C_{27}H_{25}N_5O_8$	$V = 1295.6 (18) \text{ Å}^3$
$M_r = 547.52$	Z = 2
Triclinic, $P\overline{1}$	$D_x = 1.404 \text{ Mg m}^{-3}$
a = 9.307 (7) Å	Mo $K\alpha$ radiation
b = 12.130 (10) Å	$\mu = 0.11 \text{ mm}^{-1}$
c = 12.718 (10) Å	T = 294 (2) K
$\alpha = 67.920 \ (13)^{\circ}$	Block, yellow
$\beta = 89.065 \ (13)^{\circ}$	$0.24 \times 0.20 \times 0.16 \text{ mm}$
$y = 77.497.(12)^{\circ}$	

Data collection

Bruker SMART APEX CCD area-	6619 measured reflections
detector diffractometer	4537 independent reflections
φ and ω scans	2634 reflections with $I > 2\sigma(I)$
Absorption correction: multi-scan	$R_{\rm int} = 0.026$
(SADABS; Sheldrick, 1996)	$\theta_{\rm max} = 25.0^{\circ}$
$T_{\min} = 0.958, \ T_{\max} = 0.983$	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0418P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.045$	where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.110$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 1.07	$\Delta \rho_{\text{max}} = 0.17 \text{ e Å}^{-3}$
4537 reflections	$\Delta \rho_{\min} = -0.18 \text{ e Å}^{-3}$
365 parameters	Extinction correction: SHELXL97
H-atom parameters constrained	Extinction coefficient: 0.0196 (16)

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-H\cdots A$
$C21-H21C\cdots O2^{i}$ $C5-H5\cdots O8^{ii}$	0.96	2.50	3.463 (4)	179
	0.93	2.28	3.093 (3)	146

Symmetry codes: (i) -x + 1, -y, -z + 2; (ii) -x + 1, -y, -z + 1.

H atoms were included in calculated positions (C—H = 0.93-0.97 Å) and refined as riding, with $U_{\rm iso}({\rm H})=1.2 U_{\rm eq}({\rm C})$ or $1.5 U_{\rm eq}({\rm methyl~C})$.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997a); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997a); molecular graphics: *SHELXTL* (Sheldrick, 1997b); software used to prepare material for publication: *SHELXTL*.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bruker (1999). SMART (Version 5.0) and SAINT (Version 4.0). Bruker AXS Inc., Madison, Wisconsin, USA.

Diao, C.-H., Fan, Z., Yu, M., Chen, X., Jing, Z.-L. & Deng, Q.-L. (2005). Acta Cryst. E61, o3271–o3272.

Duan, Z.-Y., Zhang, W.-J., Li, G., Han, E.-S. & Du, F.-Y. (2006). *Acta Cryst*. E62, o2997–o2998.

Klayman, D. L., Bartosevich, J. F., Griffin, T. S., Mason, C. J. & Scovill, J. P. (1979). J. Med. Chem. 22, 855–862.

Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.